DETEKSI EFEK GEMPABUMI PADA IONOSFER MENGGUNAKAN DATA GNSS

Anwar Santoso, Buldan Muslim, Siti Inayah Fitriyani

Abstract


Seismic activities such as earthquakes can cause atmospheric and infrared gravitational waves. If the earthquake happens to be strong enough (M> 6 SR), these waves can spread to the ionosphere altitude in the form of atmospheric and infrasonic gravitational waves. The monitoring system of ionospheric wave that associated with earthquakes from network of GNSS data has been much developed in Indonesia by using the sliding Fast Fourier Transform (SFFT) programfor disturbed ionospheric TEC positions. The results of previous studies, differential TEC showed irregular fluctuations in the order of several tens of seconds until to several tens of minutes with average amplitude less than 0.01 TECU. At times the ionospheric is not disturbed (regular), the amplitude can reaching greater than 0.01 TECU. As a case study, in this paper a methodological examination will be conducted on the events of Aceh earthquake on December 26, 2004 (M = 9.2 SR), Tohoku March 11, 2011 (M = 9 SR) and Yogyakarta May 27, 2006 (M = 6.2 SR).

Keywords


GNSS; Ionosphere TEC; Earthquakes; Gravity wave; Infrasonic wave

Full Text:

PDF (INDONESIA)

References


Saputra, F. A. & Cahyadi, M. N. (2017). Analisis Perubahan Ionosfer Akibat Gempa Bumi Sumatera Barat Tanggal 2 Maret 2016. Jurnal Teknik ITS, 6(2), F318-F323.

Lognonne, P., Artru, J., Garcia, R., Crespon, F., Ducic, V., Jeansou, E., Occhipinti, G., Helbert, J., Moreaux, G., & Godet, P. E. (2006). Ground based GPS imaging of ionospheric post-seismic signal. Planetary and Space Science, 54, 528-540.

Sunardi, B., Muslim, B., Sakya, A. E., Rohadi, S., Sulastri, & Murjaya, J. (2018). Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS correlation. IOP Conf. Series: Earth and Environmental Science (2018) 012014, doi: 10.1088/1755-1315/132/1/012014.

Kamogawa, M. (2006). Preseismic lithosphere atmosphere ionosphere coupling. EOS Trans. Am. Geophys Union, 87(40), 417-242.

Matsumara, M., Saito, A., Iyemori, T., Shinagawa, H., Tsugawa, T., Otsuka, Y., Nishioka, M., & Chen, C. H. (2011). Numerical simulations of atmospheric wave excited by the 2011 of the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63(7), 885-889.

Lognonne, P., Clevede, E., & Kanamori, H. (1998). Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere. Geophys J. Int., 135(2), 338-406.

Tsugawa, T., Saito, A., Otsuka, Y., Nishioka, M., Maruyama, T., Kato, H., Nagatsuma, T., & Murata, K. T. (2011). Ionospheric disturbances detected by GPS total electron content observation after the 2011 of the Pacific coast of Tohoku Earthquake. Earth Planets Space, 63(7), 875-879.

Jin, S., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Reviews, 147, 54-64.

Brunini, C. & Azpilicueta, F. J. (2009). Accuracy assessment of the GPS-based slant total electron content. J. Geodesy, 83(8), 773-785.

Muslim, B., Sunardi, B., Aldrian, E., & Prayogo, A. S. (2014). Pengembangan Sistem Monitoring Gelombang Ionosfer Terkait Gempa Bumi Menggunakan Data GPS (GPSIonoquake). Seminar Nasional Sains Atmosfer dan Antariksa – LAPAN, Bandung, 25 November 2014.

Jin, R., Jin, S. G., & Feng, G. P. (2012). M-DCB: Matlab code for estimating GNSS satellite and receiber differential code biases. GPS Solutions, 16(4), 541-548.

UpSEIS. (2006). What Is Seismology? Diakses pada 20 Juli 2019 URL: http://www.geo.mtu.edu/UPSeis/waves.html.

WDC geomagnetic. (2019). Geomagnetic data service. WDC Kyoto University, Kyoto-Japan. Diakses pada 19 Februari 2019, URL: http://wdc.kugi.kyotou.ac.jp /wdc/Sec3.html.




DOI: http://dx.doi.org/10.31258/jkfi.17.1.1-6

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image