EFEK GELOMBANG TSUNAMI ACEH 2004 PADA GANGGUAN IONOSFER BERGERAK SKALA MENENGAH DARI PENGAMATAN JARINGAN GPS SUMATRA

Asnawi Husin, Buldan Muslim

Abstract


Medium Scale Travelling Ionospheric Disturbance (MSTID), thought to be manifestation of atmospheric gravity wave (AGW) in the ionospheric altitude that propagates horizontally and effects on in the electron density structure of ionosphere. These atmospheric gravity waves sourced  from lower atmospheric activities such as typhoons, volcanic eruptions and tsunamis. Wave energy by its coupling induction process can travel to the ionosphere region. It has been understood that the TID's wave structure have an impact on the propagation of radio waves in the ionosphere so that it will affect the performance of navigation satellite-based positioning measurements. Based on Aceh tsunami in December 2004, this study aimed to investigation of the induction of atmospheric gravity waves in the ionosphere using total electron content (TEC) data from the Sumatra GPS network (Sumatra GPS Array, SUGAR). The detection technique of TEC changes due to AGW induction with a filter to separate medium scale disturbance at the ionospheric pierce point at an altitude of 350 km (IPP, Ionospheric Pierce Point). The results show the horizontal wavelength of a medium-scale TID around 180 ± 12 Km with a velocities of around 376 ± 9 ms-1. Based on two-dimensional map, the TID moves to the southeast.


Keywords


AGW; Ionosfer; MSTID; Tsunami; TEC

Full Text:

PDF (INDONESIA)

References


Makela, J. J., Lognonné, P., Hébert, H., Gehrels, G., & Lisa, R. (2011). Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011. Geophys. Res. Lett., 38 (24), pp.L00G02.

Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38(11), 1441–1481.

Peltier, W. R. & Hines, C. O. (1976). On the possible detection of tsunamis by a monitoring of the ionosphere. J. Geophys. Res., 81(12), 1995–2000.

Davies, K. & Baker, D. M (1964), Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res., 70, 2251 – 2253.

Kelley, M. C., Livingston, R., & McCready, M. (1985). Large amplitude thermospheric oscillations induced by an earthquake, Geophys. Res.Lett., 12, 577–580, doi:10.1029/GL012i009p00577.

Calais, E. & Minster, J. B. (1994). GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophys. Res. Lett., 22, 1045–1048, doi:10.1029/95GL00168.

Occhipinti, G. E., Kherani, A., & Lognonné, P. (2008). Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves, Geophys. J. Int., 173, 753–765, doi:10.1111/j.1365-246X.2008.03760.x.

Hickey, M. P., Schubert, G., & Walterscheid, R. L. (2009), Propagation of tsunami-driven gravity waves into the thermosphere and ionosphere, J. Geophys. Res., 114, A08304, doi:10.1029/2009JA014105.

Hooke, W. H. (1968). Ionospheric irregularities produced by internal atmospheric gravity waves,," J. Atmos. Terr. Phys., 30, 795–823.doi:10.1029/ 2007JA012946.

Kelder, H. & Spoelstra, T. A. (1987). Medium scale TIDs observed by radio interferometry and differential Doppler techniques, J. Atmos. Terr.Phys., 49, 7–17.

Somsikov, V. M. (1995). On mechanisms for the formation of atmospheric irregularities in the solar terminator region. J. Atmos. Terr. Phys., 57(1), 75 – 83.

Galvan, D. A., Komjathy, A., Hickey, M., Stephens, P., Snively, J. B., Song, T., Butala, M., & Mannucci, A.J. (2012). Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter, Radio Sci., 47, RS4003, doi:10.1029/2012RS005023.

Hocke, K. & Schlegel, K. (1996). A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, doi:10.1007/s00585-996-0917-6.

Maruyama, T., Tsugawa, T., Kato H, A. Saito,A., Otsuka, Y., & Nishioka, M. (2011). Ionospheric multiple stratifications and irregularities inducedby the 2011 Tohoku earthquake. Earth Planets Space, 63(7), 863–873, doi:10.5047/eps.2011.06.008.

Nishitani, N., Ogawa, T., Otsuka, Y., Hosokawa, K., & Hori, T. (2011). Propagation of large amplitude ionospheric disturbances with velocity dispersion observed by the SuperDARN Hokkaido radar after the 2011 off the Pacific coast of Tohoku Earthquake, Earth, Planets, and Space, 63, p.891-896.

Ogawa, T., Nishitani, N., Tsugawa, T., & Shiokawa, K. (2012). Giant ionospheric disturbances observed with the SuperDARN Hokkaido HF radar and GPS network after the 2011 Tohoku earthquake, Earth, Planets, and Space, 64, pp.1295-1307.

Saito, A., Fukao, S., & Miyazaki, S. (1998). High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25, 3079–3082.

Savastano, G., Komjathy, A., Verkhoglyadova, O., Mazzoni, A., Crespi, M., Wei, & Mannuccil, A. J. (2017). Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration, Sci. Rep. 7, 46607; doi: 10.1038/srep46607. 2017.

Rama Rao, P. V. S., Gopi Krishna, S., Niranjan, K., & Prasad, D. (2006). Temporal and spatial variations in TEC using simultaneous measurements from Indian GPS network of receivers during low solar activity period of 2004–05. Ann. Geophys., 24, 3279–3292, doi:10.5194/angeo24-3279.

Yiugit, E. & Medvedev, A. S. (2015). Internal wave coupling processes in Earth’s atmosphere. Advances in Space Res. 55, 983-1003 doi:10.1016/j.asr.2014.11.020.

Warnant, R., & Pottiaux, E. (2000). The increase of the ionospheric activity as measured by GPS, Earth Planets Space, 52, 1055–1060.

Husin, A., Abdullah, M., & Momani, M. A. (2011). Observation of medium‐scale traveling ionospheric disturbances over Peninsular Malaysia based on IPP trajectories," Radio Sci., 46, RS2018, doi:10.1029/2010RS004408.

Trauth, M. H. (2006). MATLAB®Recipes for Earth Sciences, Springer, New York.

Song, H. Y. & Jun, S. L. (2015). Detecting Positioning Errors and Estimating Correct Positions by Moving Window.”. PLoS ONE 10.12. pp: e0143618.

De Agostino, M. & Piras, M. (2011). Earthquake forecasting: A possible solution considering the GPS ionospheric delay. Natural Hazards and Earth System Science, 11(12), 3263–3273. https://doi.org/10.5194/nhess-11-3263-2011.




DOI: http://dx.doi.org/10.31258/jkfi.16.2.130-137

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image