PENENTUAN DENSITAS PLASMA HIDROGEN NONTERMAL PADA TEKANAN RENDAH

Nelda Ipkawati, Saktioto Saktioto, Saktioto Saktioto

Abstract


Before producing hydrogen plasma low pressure in experiment, it is necessary to know the density equilibrium process through a simulation. Hydrogen species densities of non-thermal plasma at low pressure is simulated using chemical kinetik model by Runge Kutta method. This simulation carried out to determine the equilibrium process of densities and reaction rates of hydrogen species in achieving equilibrium conditions. The equation used time-dependent continuity equation and Arrhenius form. The hydrogen species consist of electrons, H, H2, H+ and H2+. The results of show that electron density, H, H2, H+ and H2+ are respectively 1020,23m-3, 1019,69m-3, 1019,91m-3, 1019,39m-3 and 1018,43m-3 during of 23-24 ns. These describe that the density of each species of hydrogen very fast to achieve equilibrium conditions, while the value of the reaction rate obtained can be concluded that the value of the largest reaction rate is the impact ionization process with a value of 9.86x1052m-3 s-1and the smallest one is dissociation process with a value of 1.22x10-5m-3 s-1.


Keywords


Simulation; Non-thermal Hydrogen Plasma Density; Low Pressure Plasma; Chemical Kinetic Model; MATLAB

Full Text:

PDF (INDONESIA)

References


Ghufron, M., Yunata, E. E., & Aizawa, T. (2016). Simulasi 1D Pengaruh Tekanan terhadap Densitas Elektron pada Plasma Argon DC Bias Discharge. SMARTICS Journal, 2(1).

Bogaerts, A., Neyts, E., Gijbels, R., Mullen, J. V. D. (2002). Gas Discharge Plasmas And Their Applications.Spectrochimica Acta., Part B 57, 609-658.

Diener. (2007). Plasma Technology.Germany: Diener.

Koten, D. S., dkk. (2017). Rancang Bangun Generator Plasma dengan Media Gas Argon. Jurnal EECCIS, 11(1).

Astuti, A. R., dkk. (2017). Plasma Pembersih pada Logam. Proceeding of Chemistry Conference, 2.

Watanabe, T., Atsuchi, N., & Shigeta, M. (2006). Two-Temperature Chemically Non-Equilibrium Modeling of Argon Induction Plasmas with Diatomic Gas. International Journal of Heat and Mass Transfer, 49, 4867-4876.

Baulch, D. L., Boowman, C. T., Cobos, C. J., Cox, R. A., Just, Th., Kerr, J. A., & Warnatz, J. (2005). Evaluated Kinetic Data for Combustion Modeling: Supplement II. Journal of Physical and Chemical Reference Data, 34(3), 905-912.

Westley, F. (1980). Table of Recommended Rate Constants for Chemical Reactions occurring in Combustion. Washington D.C: United States National Standard Reference Data Series-National Bureau of Standards.

Tanaka, Y. (2009). Thermally and chemically non-equilibrium modelling of Ar-N2-H2 inductively coupled plasmas at reduced pressure. Thin Solid Films, 518(3), 936-942.

Cohen, N. & Westberg, K. (1980). Chemical Kinetic Data Sheets for High Temperature Chemical Reactions. Journal of Physical and Chemical Reference Data, 12(3), 559-562.

Kimura, T. & Kasugai H. (2010). Properties of Inductively Coupled RF Ar/H2Plasmas: Experiment And Global Model. Journal of Applied Physics, 107(8), 083308.

Post, D. E. (1995). A Review of Recent Developments in Atomic Processes for Divertors and Edge Plasmas.Shortened PSI Review Paper 6.

Wevers, J. C. A. (1993). A Numerical and Experimental Characterization of A Hydrogen Plasma (Report of a graduation study in the group Equilibrium and Transport in Plasmas). Eindhoven University.




DOI: http://dx.doi.org/10.31258/jkfi.16.1.29-34

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image