PENGARUH HAMBATAN INTERNAL TERHADAP DAYA OUTPUT ELEMEN TERMOELEKTRIK GENERATOR TIPE 10W-4V-40s

Eri Wiyadi, Lazuardi Umar

Abstract


Thermoelectric generator Type 10W-4V-40s powered by Seebeck effect by utilizing temperature difference in both sides of the element. The hot side (Th) of a TEG element is placed on a stand made of Aluminum-Dural material and given a heat source derived from a heater, on the cold side (Tc) TEG element installed heatsink to reduce heat energy through the cold side and keep the temperature low. The measurement of output power (PL) is done by variation of RL from 0 Ω to 20 Ω under temperature difference conditions (ΔT) varies with constant Tc at 30ºC, the result of the research indicates that the output power (PL) of the thermoelectric element is maximum at RL = 1 Ω when the minimum load decreases and is proportional to the increase in RL resistance. The internal resistance value (Rint) of the TEG element increases in proportion to the magnitude of ΔT on both sides of the element, on Tc and Th at room temperature (30ºC) the value of Rint is 0.85 Ω and the maximum value at ΔT = 50ºC is 1,043 Ω. This indicates that the TEG element depends not only on ΔT on both sides of the module, but also depends on the amount of temperature range used.


Keywords


Thermoelectric generator; internal resistance; output power

Full Text:

PDF (INDONESIA)

References


Sekretariat Perusahaan PT PLN. (2013). Statistik PLN 2013. Jakarta: Persero.

Energy Information Administration (EIA). (2016). International Energy Outlook (IEO), Washington, DC: U.S. Department of Energy.

Arman, M. (2010). Simple Demonstration of the Seebeck Effect, The Petroleum institute, abu dhabi, united emirates, Science Education Review.

Adli, W., Walfred, T., Defrianto, & Umar, L. (2016). Simulasi 3 Dimensi Distribusi Panas Plat Knalpot Mobil untuk Elemen Termoelektrik. Komunikasi Fisika Indonesia, 13, 793-800.

O’Hanley, H. (2009). Performance of a Stove Mounted Thermoelectric Generator, Measurement and Instrumentation, MIT, USA.

Tambunan, W., Umar, L., & Fuji, D. (2015). Pengembangan dan Optimalisasi Elemen Peltier Sebagai Generator Termal Memanfaatkan Energi Panas Terbuang. Komunikasi Fisika Indonesia. 12, 720-726.

Thacher, E. F., Helenbrook, B. T., Karri, M. A., & Ritchter, C. J. (2007). Testing of an Automobile Exhaust Thermoelectric Generator in a Light Truck. Proc. I MECH E, Part D: J. Automobile Engineering, 221 (1), 95-107.




DOI: http://dx.doi.org/10.31258/jkfi.15.1.67-70

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexing by:

  

 

Image