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ABSTRACT 
  

We propose an interesting result of the trapped multi photons distribution within a fiber Bragg grating. The 

trapped photons are confined by the potential well, which introduce the motion of photons in a fiber Bragg grating 

affected by multi perturbations.  The external perturbations are defined as series of nonlinear parametric in terms of 

potential energy.  This investigation is developed by using the nonlinear couple mode equations and under Bragg 

resonance condition where the initial frequency of the light, 0 is the same value as the Bragg frequency, B.  The 

results show that the higher perturbation series represents the potential well is much indifferent of equilibrium. In 

applications, the perturbation can cause the trapped photons instability which introduces the escape photons from the 

potential well. The applications such as entangled photon source and quantum sensors can be performed. 
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1. INTRODUCTION 
 

Fiber Bragg Grating (FBG) is known as a 

special device that when ultraviolet (UV) light is 

radiated on an optical fiber, the refractive index of 

the fiber core is changed due to the effect termed as 

photosensitivity [1].  FBG in optical fibers have been 

demonstrated in a wide range of applications such as 

for sensors, dispersion compensators, optical fiber 

filter and all optical switching and routing.  The 

discovery of photosensitivity led to a wide range of 

range of optical fiber communication and optical 

sensor system.  This process can be understood 

microscopically if we consider that light moves as 

particles.  Therefore, numerous research is directed 

towards investigation of pulse propagation in FBGs 

[1-4]. Periodically structured optical media have been 

in the clarity of research activity for many years, due 

to versatile technologies applications in the fields of 

telecommunications and sensor system [1], and also 

as a subject of fundamental studies [2].  At the early 

stage of the work in this area, the pioneering 

contribution by Winful et. al. [3] laid the groundwork 

for extensive theoretical activities exploring 

nonlinear pulse propagating in one dimensional 

periodic structure known as fiber Bragg gratings.  

They have considered the role of the Kerr 

nonlinearity in the light transmission through the 

FBGs. Bragg gratings in optical fibers are excellent 

devices for studying nonlinear phenomena 

particularly based on the Kerr nonlinearity [4].  These 

structures are based on the periodic modulation of the 

local periodic modulation of the local refractive index 

in the axial direction.  A characteristic feature of 

FBGs is a stopband, alias photonic bandgap, in their 

linear-propagation spectrum.  The bandgap is induced 

by the resonant coupling between the forward- and 

backward-propagating waves due to the Bragg 

resonance [5].  The stationary properties of one-

dimensional Bragg gratings were first analyzed by 

Winful et.al [6].  Research on the existence of soliton 
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in FBGs has been reported [7].  Chen and Mills 

coined the term gap soliton in their numerical work 

covering the nonlinear optical super lattices [8].  

Mills and Trullinger obtained an analytical solution 

for stationary gap solitary waves [9].  Sipe and 

Winful [10], Christoudolides and Joseph [11], 

Aceves and Wabnitz [12], de Sterke and Sipe [13-14] 

and recently K. Senthilnathan et. al have derived the 

formation of bright and gap soliton solution for 

nonlinear coupled mode equation, which governs the 

pulse propagation in FBG [7].     

The motion of a particle moving in FBG 

represents the pulse propagation in the grating 

structure of fiber optics exhibiting the existence of 

optical soliton.  In order to describe the photon 

motion, the function of potential energy is depicted.  

Photon can be trapped by some parameters of 

potential energy such as  and .  The other 

parameter, theta,  is introduced to describe any 

disturbance effect of moving particle having specific 

energy.  

In this paper we further describe the effect of 

 and   to obtain the optimized point of the potential 

well where the those parameters imposed to the 

energy stability.  

 

2.  MULTI PHOTONS POTENTIAL 

ENERGY DISTRIBUTION  

 Wave propagation in FBG is analyzed by 

solving Maxwell’s equation with appropriate 

boundary conditions.  In the presence of Kerr 

nonlinearity, using the coupled-mode theory, the 

nonlinear coupled mode equation is defined under the 

absence of material and waveguide dispersive effects. 

The dispersion arising from the periodic structure 

dominates near Bragg resonance conditions and it is 

valid only for wavelengths near to the Bragg 

wavelength.  By substituting the stationary solution 

to the coupled mode equation and by 
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          Equation (1) represents the time-independent 

light transmission through the gratings structure 

where ef and eb are the forward and backward 

propagating modes [1].  In order to explain the 

formation of Bragg soliton, consider the Stokes 

parameter [11] since it will provide useful 

information about the total energy and energy 

difference between the forward and backward 

propagating modes. 
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22

30 bf eeAP  inside the grating is 
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NLCM equations in terms of Stokes parameter gives 
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In Equation (3), we drop the distinction between the 

Self-Phase Modulation and cross effect modulation 

effects and hence it becomes sx  23  .  It 

can be clearly show that the total power, P0 (=A3) 

inside the grating is found to be constant or 
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conserved along the grating structure [2].  In the 

construction of the anharmonic oscillator type 

equation, it is necessary to use the conserved 

quantity, and it is obtained in the form 

CAAA  1

2

00
4

3ˆ  , where C is the constant 

of integration and ̂  is the detuning parameter.  

Using Equation (3), we obtain  
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4

9
 .  Equation (4) contains all the physical 

parameter of the NLCM equation. 

In order to describe the motion of a particle moving 

with the classic anharmonic potential, where the 

external disturbance is involved then we have the 

solution as follows, 

 
432

4

0

3

0

2

0

0

AAA
AV    (5) 

It represents the potential energy distribution in the 

Fiber Bragg Grating structures. 

 

3. MULTI PHOTONS TRAPPING 

INSTABILITY  

Consider Equation (2) having a set of constraints 

which is introduced by   
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If Equation (4) is accumulated using external 

perturbation then 
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The value of m = 2n  for  n = 1, 2, 3, …, m = 2n + 1  

for  n = 0, 1, 2, ….   

C is constant and C = (C1, C2, C3, …, Cm).  The value 

of C is linear to A0 but not to V.  Equation (5) can  

then be modified by 
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Equation (7) represents the complete potential energy 

distribution in the Fiber Bragg Grating structure.  We 

believe at this juncture, the potential function is 

modified from Conti and Mills [14].  Using well-

known Duffing oscillator type equation, analogically 

it is written as 
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For multi perturbation of nonlinear parametric, two 

major shapes will be simplified in series term.   

Fig. 1 depicts the motion of photon in 

potential well changes when few nonlinear parameter 

is take into account as shown is Equation (5), i.e. a 

diagram of launching light pulse into an FBG, the 

arrow for the applied external force to the grating 

region and at the output FBG-connect to the quantum 

processor .  There are theoretically some comments 

in this figure.  Photon is trapped by  parameter 

which is depicted by legend V.  When  is too large, 

the potential well produces A0 an increase in and have 

a wider double well.    parameter is shown by X 

legend.  When  is large, the potential well produces 

an increase in A0.  Suppose that the source that is 

imposed onto FBG than initial power is used to 

generate the particles.  It shows that double well 

potential well is not symmetric and potential energy 

will decrease within the region at legend Y.  The 

other effect is the perturbation of potential energy by 
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legend Z where photon cannot be trapped 

symmetrically.  It will tend to equilibrate but it is not 

stable where it will lead to losses. 

 

 

Fig. 1:  The motion of photon in potential well for α = 0.9,  = 0.3,  = 0.09 and  is varies from 0.3 to 0.9. 

 

In term of parametric function, we can describe it as 

follows.  The change in  will affect the dip of the 

potential well. If  is approximately too small, the 

shape of the potential well will turn into a single 

potential well.  The occurrence of  effect in the 

motion of photon will give effect to the negative 

region for A0 < 0. The effect of  shows that the width 

of potential well will decrease if we increased the 

value of . Therefore if we increased the value of , 

we can assume that the photon will be localized 

trapped.  Another nonlinear factor,   will turns the 

shape of potential well rapidly.  If we include the 

existence of , the shape of potential well becomes 

chaotic.  The photon does not only move in certain 

region known as potential well but also can be termed 

as free moving particles. 

Fig. 2 explains the extrapolation of the graph if more 

factors of perturbation added into Equation (7).  The 

addition of parametric factors by the higher odd 

number (Fig. 2(b)) will lead the photon to be 

untrapped and higher even number (Fig. 2 (a)) will 

allow the photon to move in a well.  It is clearly 

shown in the graphs that as n>> , the value of |A0| 

will remain constant in the range of -2<A0<2. 

However, when the value of V(0) is equal to zero, 

there are many possibilities of A0, meaning the exact 

value of intentsity, A0 to trap the photon is difficult to 

determine in this condition.  If the parametric factor 

is considered is too large then we may conclude that 

the photon is in indifferent state part of the 

equlibrium. 
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  Fig. 2(a)      Fig. 2 (b) 

Fig.2:  The disturbance factor that affect the shape of the potential well of the motion of photon. 

 

The stationary solutions of Equation (7) are 

applied neither for bright nor dark soliton solution 

since the dominant parameters in contributing A0 is 

unknown.  However, from Equation (7) we have 

  zCAA m ,00                   (9) 

Under these conditions, the frequencies with photonic 

band gap keep forming an envelope after the exact 

balancing at grating-induced dispersion with 

nonlinearity.  It either decays or increased with the 

forward and backward waves being transferred by 

Bragg reflection process.  The total energy of the 

system, potential energy function is equal to zero 

having multi perturbation which is -1<A0<1 and if 

V, A0 = 2. 

 

4. PROPOSAL OF QUANTUM 

PROCESSING UNIT  

Let us consider that the case when the photon 

output is input into the quantum processor unit. 

Generally, there are two pairs of possible polarization 

entangled photons forming within the ring device, 

which are represented by the four polarization 

orientation angles as [0
o
, 90

 o
], [135

 o
 and 180

 o
]. 

These can be formed by using the optical component 

called the polarization rotatable device and a 

polarizing beam splitter (PBS). In this concept, we 

assume that the polarized photon can be performed by 

using the proposed arrangement. Where each pair of 

the transmitted qubits can be randomly formed the 

entangled photon pairs. To begin this concept, we 

introduce the technique that can be used to create the 

entangled photon pair (qubits) as shown in Fig. 15, a 

polarization coupler that separates the basic vertical 

and horizontal polarization states corresponds to an 

optical switch between the short and the long pulses. 

We assume those horizontally polarized pulses with a 

temporal separation of t. The coherence time of the 

consecutive pulses is larger than t. Then the 

following state is created by Eq. (6) [11,12]. 

isisp
H,2H,2H,1H,1 

  (10) 

In the expression k,H,k is the number of time slots (1 

or 2), where denotes the state of polarization 

[horizontal  
H

 or vertical 
V

], and the subscript 

identifies whether the state is the signal (s) or the idler 

(i ) state.  In Eq. (6), for simplicity, we have omitted 

an amplitude term that is common to all product 
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states. We employ the same simplification in 

subsequent equations in this paper. This two-photon 

state with  
H

 polarization shown by Eq. (6) is input 

into the orthogonal polarization-delay circuit shown 

schematically. The delay circuit consists of a coupler 

and the difference between the round-trip times of the 

micro ring resonator, which is equal to t. The micro 

ring is tilted by changing the round trip of the ring is 

converted into 
V

at the delay circuit output. That is 

the delay circuits convert 
H,k

to be 

 
H,kr

+
V,1k)iexp(t 2 

+
H,2k)iexp(rt 22 

+   

V,3k)iexp(tr 322 
.  

Where t and r is the amplitude transmittances to cross 

and bar ports in a coupler. Then Eq. (6) is converted 

into the polarized state by the delay circuit as 

][
sss
V,2)iexp(H,1  ][

iii
V,2)iexp(H,1 

][
sss

V,3)iexp(H,2  ][
iii
V,2)iexp(H,2   

][
isiis
V,2H,1)iexp(H,1H,1 

iss H,1V,2)iexp(   
isis V,2V,2iexp ][ 

is
H,2H,2  

isi V,3H,2iexp 

 
iss H,2V,3iexp   

isis V,3V,3iexp ][ 
      (11) 

By the coincidence counts in the second time slot, we 

can extract the fourth and fifth terms. As a result, we 

can obtain the following polarization entangled state 

as  

is
H,2H,2

 
isis V,2V,2iexp ][ 
    (12) 

We assume that the response time of the Kerr 

effect is much less than the cavity round-trip time. 

Because of the Kerr nonlinearity of the optical device, 

the strong pulses acquire an intensity dependent phase 

shift during propagation. The interference of light 

pulses at a coupler introduces the output beam, which 

is entangled. Due to the polarization states of light 

pulses are changed and converted while circulating in 

the delay circuit, where the polarization entangled 

photon pairs can be generated. The entangled photons 

of the nonlinear ring resonator are separated to be the 

signal and idler photon probability.  The polarization 

angle adjustment device is applied to investigate the 

orientation and optical output intensity, this concept is 

well described by the published work [13]. 

 

Fig.  3.  A schematic of an entangled photon pair manipulation within a ring resonator. The Bell’s state is 

propagating to a rotatable polarizer and then is split by a beam splitter (PBS) flying to detector D1 and D2. 
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Fig.  3.  A schematic of an entangled photon pair 

manipulation within a ring resonator. The Bell’s state 

is propagating to a rotatable polarizer and then is split 

by a beam splitter (PBS) flying to detector D1 and D2. 

Figure 3 is underway to generate and compare to the 

perturbation condition for energy stability. 

 

5.  CONCLUSION 

We successfully modified and developed the 

potential energy distribution of photon by setting the 

disturbance of multi perturbation potential energy in 

a fiber Bragg grating.  It is found that the potential 

well under Bragg resonance condition is not 

symmetrical and conserved.  The higher perturbation 

series representing the potential well is much 

indifferent of the equilibrium in both odd and even 

nonlinear parametric factor of n. 
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